Combination of novel systemic agents and radiotherapy for solid tumors – part I: An AIRO (Italian association of radiotherapy and clinical oncology) overview focused on treatment efficacy

Stefano Arcangeli⁎, Barbara Alicia Jereczek-Fossa, Filippo Alongi, Cynthia Aristeid, Carlotta Becherini, Liliana Belgioia, Michela Buglione, Luciana Caravati, Rolando Maria D’Angelillo, Andrea Riccardo Filippi, Michele Fiore, Domenico Genovesi, Carlo Greco, Lorenzo Livio, Stefano Maria Magrini, Giulia Marvaso, Rosario Mazzola, Icro Meattini, Anna Merlotti, Isabella Palumbo, Stefano Pergolizzi, Sara Ramella, Umberto Ricardi, Elvio Russi, Marco Trovò, Alessandro Sindoni, Vincenzo Valentini, Renzo Corvò

Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan “Bicocca”, Milan, Italy
Department of Radiation Oncology of IEO European Institute of Oncology IRCCS, Milan, Italy
Department of Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, and University of Brescia, Brescia, Italy
Radiation Oncology Section, Department of Surgical and Biomedical Science, University of Perugia, Perugia General Hospital, Perugia, Italy
Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
Department of Radiation Oncology, Ospedale Policlinico San Matteo and University of Genoa, Genoa, Italy
Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
Department of Radiation Oncology, SS. Annunziata Hospital, G. D’Annunzio University of Chieti, Chieti, Italy
Department of Radiation Oncology, Azienda Sanitaria Universitaria Integrata of Udine, Udine, Italy
Gemelli Advanced Radiation Therapy Center, Fondazione Policlinico Universitario “A. Gemelli”, Catholic University of Sacred Heart, Rome, Italy

A B S T R A C T

Over the past century, technological advances have promoted the evolution of radiation therapy into a precise treatment modality allowing for the maximal administration of dose to tumors while sparing normal tissues. In parallel with this technological maturation, the rapid expansion in understanding the basic biology and heterogeneity of cancer has led to the development of several compounds that target specific pathways. Many of them are in advanced steps of clinical development for combination treatments with radiotherapy, and can be incorporated into radiation oncology practice for a personalized approach to maximize the therapeutic gain. This review describes the rationale for combining novel agents with radiation, and provides an overview of the current landscape focused on treatment efficacy.

1. Introduction

In many solid tumors, radiotherapy (RT) is combined with chemotherapeutic agents to improve treatment efficacy. This approach, initially described by Steel and Peckham in 1979 (Steel and Peckham, 1979), is based on the premise that such combinations have spatial cooperation as the former targets the primary tumor site, whereas the latters target tumor cells outside the tumor irradiation field (micro-metastases). A further effect depends on the interactions between RT and chemotherapy (CT) that occur at multiple levels. The better understanding of the genetic framework of specific tumors, as well as contributions of tumor microenvironment to tumor growth and treatment response, molecular mechanisms of signaling transduction and the role of immune modulation on treatment outcomes, have improved...
strategies to target these distinctive tumors features through the development of new molecularly targeted drugs as well as immunotherapeutic agents. Coupled with biomarkers of response (clinical, molecular, or imaging), this breakthrough can drive the precision medicine process by incorporating agents that molecularly target drivers of radiation resistance into radiation oncology practice with the aim of maximizing the therapeutic gain from chemoradiotherapy (CT-RT), while causing minimal collateral normal tissue damage. In this Review, we describe the rationale of the association of RT and novel systemic agents for multiple disease sites and summarize the updated results of clinical trials using this strategy. Additionally, we discuss potential opportunities for and challenges to the use of RT and new compounds, along with its introduction into routine clinical practice, and examine areas in which further research and clinical evidence is warranted. The first part is focused on the treatment efficacy, while safety issues are discussed in a parallel manuscript.

2. Monoclonal antibodies

2.1. EGFR inhibitors: Cetuximab and Panitumumab

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase consisting of an extracellular domain, a single transmembrane region, and a cytoplasmic kinase domain (Gullick et al., 1985). Phosphorylation of the EGFR stimulates intracellular downstream pathways leading to cellular proliferation, arrest of apoptosis, neovascularization and activation of cancer invasion and metastasis. The mechanism of radiosensitization with EGFR inhibitors is complex: ionizing radiation induces the nuclear translocation of EGFR, where it associates with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), stimulating the repair of double-strand breaks. The use of EGFR inhibitors hinders DNA repair by blocking the nuclear translocation of EGFR and hence increases the radiosensitivity (Jiccardi et al., 2014). EGFR’s role in the radiation response includes also the activation of prosurvival pathways and enhances cell proliferation (Huang and Harari, 2000; Nyati et al., 2006; Chen and Neri, 2007).

In squamous cell carcinoma of the head and neck (SCCHN) a first randomized trial demonstrated an improvement in the duration of control of locoregional disease (the primary endpoint of the study) and overall survival (OS) (secondary endpoint) adding Cetuximab to RT versus RT alone, especially in younger patients with oropharynx primary treated with accelerated RT (Bonner et al., 2006). This benefit was not so clear when Cetuximab was tested in combination with CT-RT: while Cetuximab plus Cisplatin-RT did not improve outcomes for patients with stage III/IV SCCHN compared to Cisplatin-RT in the phase III RTOG 0522 trial (Ang et al., 2014), the recently published GORTEC 2007-01 study (Tao et al., 2018) demonstrated the effect of adding concomitant CT to Cetux-RT, by increasing the 3-year progression-free survival (PFS) (primary endpoint) rate from 40.5% to 52.5% (P = 0.015), but no significant advantage in OS (HR, 0.80; P = .11) in patients with oral cavity, oropharynx and larynx cancers (mostly HPV-negative) with no or limited nodal spread (≤N2b). Lefebre et al. (Lefebvre et al., 2013) attempted to replace CT with Cetuximab as a radiosensitizer, and compared the efficacy and safety of induction CT followed by CT-RT or bioradiotherapy Cetuximab-RT in terms of larynx preservation (primary endpoint): no evidence that one treatment was superior to the other was found. A phase II trial (Magaini et al., 2016) compared CT with concomitant Cisplatin versus concomitant Cetuximab as first-line treatment of locally advanced (LA) SCCHN having compliance, toxicity, and efficacy as primary endpoints: similar patterns of locoregional control, failure and survivals were found between the treatment arms. The same authors in a subgroup analysis (Buglione et al., 2017) detected a lower efficacy of Cetuximab in patients with p16/Human Papilloma Virus (HPV+) oropharyngeal squamous cell carcinoma (OPSCC). This finding was confirmed in the NRG-RTOG 1016, an inferiority Phase III Trial comparing RT with Cetuximab to RT with Cisplatin in HPV + OPSCC, that revealed an inferior OS (primary endpoint) and PFS in the former group (Trotti et al., 2018).

(ARGs et al., 2010) incorporated Cetuximab into the induction therapy and subsequent CT-RT of head and neck cancer with promising 3-year PFS and OS (70% and 74%, respectively), both primary endpoints of the study. Conflicting data emerged when Cetuximab-RT was preceded by induction CT in a similar setting: the GORTEC 2007-02 phase III trial (Geoffrois et al., 2018); (Marur et al. (2016)) evaluated Cetuximab in induction and concomitant phase in the subset of p16/HPV + OPC: after median follow-up of 35.4 months, 2-year PFS (primary endpoint) and OS rates were 80% and 94%, respectively, for patients who achieved a primary site clinical complete response to induction CT treated with 54 Gy of RT, and 96% and 96%, respectively, for those (with < T4, < N2c) who were treated with RT dose reduction (≤ 54 Gy).

In locally advanced non small cell lung cancer (LA NSCLC) available data are based mainly on phase II and randomized controlled trials, where Cetuximab has been investigated in association with concurrent CT-RT without advantage in OS (Blumenschein et al., 2011; Govindan et al., 2011; van den Heuvel et al., 2014; Bradley et al., 2015; Walraven et al., 2016). As far as gastrointestinal cancers are concerned, preliminary phase I/II trial evaluated the addition of Cetuximab to CT-RT (Hofheinz et al., 2006; Machiels et al., 2007); (D’wiedney et al. (2012)) evaluated 165 high-risk rectal cancer patients who randomly received 4 cycles of Capecitabine/Oxaliplatin (CAPOX) followed by Capecitabine CT-RT, surgery, and adjuvant CAPOX (4 cycles) versus the same regimen plus weekly Cetuximab (CAPOX + C), and found no advantage in the primary endpoints (CR or PFS), but a significant improvement of radiological response and OS.

In esophageal cancer, two phase II trials (Safran et al., 2008; Lledo et al., 2016) evaluated the safety and efficacy of concomitant Cetuximab added to CT-RT in locally advanced inoperable patients: Safran et al. (Safran et al., 2008)Lledo et al. (2016)(Crosby et al. (2013)) observed a shorter (22.1 months vs 25.4 months; P = 0.035) median OS (primary endpoint) in patients who received CT-RT plus Cetuximab compared to those who received CT-RT. Similarly, a phase III trial (Suntharalingam et al., 2017) evaluated the benefit of Cetuximab added to concurrent CT-RT therapy and found that it did not improve OS (primary endpoint). In locally advanced, but still resectable, esophageal carcinoma, the SAKK 75/08 trial (Ruhstaller et al., 2018) compared CT-RT followed by surgery with or without neoadjuvant and adjuvant Cetuximab: median PFS (primary endpoint) was not significantly improved with the addition of Cetuximab (2.9 years versus 2 years, respectively) [P = 0.13], while median OS was 5.1 years versus 3.0 years for Cetuximab and control, respectively (P = 0.055). Other studies evaluated Cetuximab as induction treatment and its subsequent association with neoadjuvant or radical CT-RT, with wide rates of pCR (6–40%) (Tomblyn et al., 2012; Ruhstaller et al., 2011). The controversial findings of these trials point to little benefit to current EGFR-targeted agents in an unselected patient population, and highlight the need for predictive biomarkers in the treatment of esophageal cancer.

(Giralt et al. (2015); (Siu et al. (2016)) compared PFS in patients with LA SCCHN treated with standard-fractionation RT plus high-dose Cisplatin vs accelerated-fractionation RT plus Panitumumab: with a median follow-up of 46 months, 2-year PFS of the experimental arm was not superior to Cisplatin plus standard-fractionation RT (73% [95% CI, 65–79%] versus 76% [95% CI, 68–82%], respectively (P = 0.83), and non-inferiority was not proven. Mesia et al. (Mesia et al., 2015) randomised patients with unselected LA SCCHN to receive CT–RT plus Panitumumab versus CT–RT alone: again, no significant difference between the two groups in terms of 2-year loco-regional control – the primary endpoint of the study – was found (61% [95% CI, 50–71] vs 68% [95% CI, 54–78], respectively).

In gastrointestinal cancers Panitumumab has been tested mainly in phase II trials for locally advanced esophageal cancer (LAEC) and LARC in neoadjuvant setting associated to CT-RT, with promising results: in
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study type</th>
<th>N</th>
<th>Tumor site and stage (if available)</th>
<th>RT technique/dose/fractionation</th>
<th>Combination (concomit, other)</th>
<th>Primary Endpoint</th>
<th>Treatment outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonner et al. (2006)</td>
<td>Phase III</td>
<td>211</td>
<td>LA-SCCHN</td>
<td>−70 Gy/35 fx or −72-76.8 Gy/60-64 fx (twice daily) or −72 Gy/42 fx</td>
<td>CT-RT (CDDP) +/- Ctx</td>
<td>LRC</td>
<td>Median LRC: 24.4 VS 14.9 months (P = 0.005) 5-yy OS: 45.6% vs 36.4% (P = 0.018)</td>
</tr>
<tr>
<td>Ang et al. (2014)</td>
<td>Phase III</td>
<td>940</td>
<td>LA-SCCHN</td>
<td>-ART 72 Gy/42 fx or -IMRT 70 Gy/35 fx</td>
<td>CT-RT (CDDP) +/- Ctx</td>
<td>PFS</td>
<td>3-yy PFS: 72.8% vs 49.2% (P < .001) 3-yy OS: 85.6% vs 60.1% (P < .001)</td>
</tr>
<tr>
<td>Tao et al. (2018)</td>
<td>Phase III</td>
<td>406</td>
<td>LA-SCCHN (non-palpable N0-N2b) stage III-IV larynx/hypopharynx SCC</td>
<td>3DCRT/IMRT 70 Gy/35 fx</td>
<td>Ctx + CT-RT vs Ctx + RT</td>
<td>PFS</td>
<td>3-yy PFS: 52.3% vs 40.5% (P = .015) 3-yy OS: 60.8% vs 54.9% (P = 0.11) 3-months LP: 95% vs 93% (P = NS) 18-months OS: 92% vs 89% (P = NS)</td>
</tr>
<tr>
<td>Magrini et al. (2016)</td>
<td>Phase II R</td>
<td>35</td>
<td>LA-SCCHN</td>
<td>3DCRT/IMRT 70 Gy/35 fx</td>
<td>CT-RT (CDDP) +/- Ctx</td>
<td>LC</td>
<td>2-yy LC: 100% vs 72.9% (P = NS) 2-yy OS: 100% vs 77.8% (P = NS)</td>
</tr>
<tr>
<td>Troiti et al. (2018)</td>
<td>Phase III</td>
<td>805</td>
<td>OPSCC HPV+</td>
<td>IMRT 70 Gy/35 fx</td>
<td>RT + CDDP vs RT + Ctx</td>
<td>OS</td>
<td>5-yy OS: 84.6% vs 77.9% (HR 1.45; 95% CI 1.03-2.05) 5-yy PFS: 78.4% vs 67.3% (HR 1.72, 95% CI 1.29-2.29)</td>
</tr>
<tr>
<td>Argiris et al. (2010)</td>
<td>Phase II</td>
<td>39</td>
<td>LA-SCCHN</td>
<td>IMRT 70 Gy/35 fx</td>
<td>Induction - TPE (3 cycles q21) Concomitant - RT + CDDP + Ctx (weekly) Maintenance - Ctx (6 months)</td>
<td>PFS</td>
<td>3-yy PFS: 79% 3-yy OS: 74%</td>
</tr>
<tr>
<td>Geoffroy et al. (2018)</td>
<td>Phase III</td>
<td>370</td>
<td>LA-SCCHN (≥N2b)</td>
<td>RT 70 Gy/35 fx</td>
<td>Induction TPF − RT + Ctx vs CT-RT (Carbo + 5-FU)</td>
<td>PFS</td>
<td>Median PFS: 12.5 vs 11.5 months (P = 0.74) Median OS: 22.8 vs 24.6 months (P = 0.48)</td>
</tr>
<tr>
<td>Marur (2017)</td>
<td>Phase II</td>
<td>90</td>
<td>OPSCC HPV+</td>
<td>IMRT 69.3 Gy/33 fx or 54 Gy/27 fx (if CR to induction)</td>
<td>Induction CDDP + PAC + Ctx Concomitant: RT + Ctx (weekly)</td>
<td>PFS</td>
<td>For 54 Gy − 2-yy PFS: 80% − 2-yy OS: 94%</td>
</tr>
<tr>
<td>Govinda et al (2011)</td>
<td>Phase II R</td>
<td>101</td>
<td>Stage III NSCLC</td>
<td>3DCRT 70 Gy/35 fx</td>
<td>CT- RT (Carboplatin + PEM) +/- Ctx</td>
<td>OS</td>
<td>18-month OS: 58% vs 54% (P = .667) 1-yy OS: 82% vs 71% (P = .99)</td>
</tr>
<tr>
<td>Van den Heuvel et al. (2014)</td>
<td>Phase II R</td>
<td>102</td>
<td>Stage III NSCLC</td>
<td>ART 66 Gy/24 fx</td>
<td>CT-RT (CDDP) +/- Ctx</td>
<td>LCR</td>
<td>LRC: 84% vs 92% (P = 0.36) 1-yy OS: 82% vs 71% (P = 0.99)</td>
</tr>
<tr>
<td>Bradley et al. (2015)</td>
<td>Phase III</td>
<td>544</td>
<td>Stage III NSCLC</td>
<td>60 Gy/30 fx vs 74 Gy/37 fx</td>
<td>CT- RT (Carboplatin + PAC) +/- Ctx</td>
<td>OS</td>
<td>Median OS: 25 vs 24 months (P = 0.29)</td>
</tr>
<tr>
<td>Walraven et al. (2016)</td>
<td>Phase II R</td>
<td>102</td>
<td>Stage II-III NSCLC</td>
<td>ART 66 Gy/24 fx</td>
<td>CT-RT (CDDP) +/- Ctx</td>
<td>OS</td>
<td>Median OS: 33 vs 30 months (P = 0.722) 2-yy OS: 60.8% vs 58.8% (P = 0.840) 5-yy OS: 37.3% vs 37.3% (P = 1.000)</td>
</tr>
<tr>
<td>Dwedney et al. (2012)</td>
<td>Phase II R</td>
<td>165</td>
<td>High risk rectal cancer</td>
<td>3DCRT 45 Gy/25 fx + boost 16.2 Gy/3 fx</td>
<td>CT-RT (CAPOX) +/- Ctx</td>
<td>CR</td>
<td>CRC: 14% vs 18% (P = .574)</td>
</tr>
<tr>
<td>Safran et al. (2008)</td>
<td>Phase II</td>
<td>60</td>
<td>-57 esophageal cancer -3 gastric cancer</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT- RT (Carboplatin + PAC) + Ctx</td>
<td>Safety/Efficacy</td>
<td>CCR: 70%</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study type</th>
<th>N</th>
<th>Tumor site and stage (if available)</th>
<th>RT technique/dose/fractionation</th>
<th>Combination (concomit, other)</th>
<th>Primary Endpoint</th>
<th>Treatment outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lledo et al. (2016)</td>
<td>Phase II</td>
<td>79</td>
<td>Stage III EC or GEJC</td>
<td>3DCRT 50.4 Gy/30 fx</td>
<td>FOLFOX) + Ctx</td>
<td>ORR</td>
<td>ORR: 77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pCR: 40% Median OS: 21.6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median PFS: 11.3 months</td>
</tr>
<tr>
<td>Crosby et al. (2013)</td>
<td>Phase II-III</td>
<td>258</td>
<td>stage I-III EC</td>
<td>3DCRT 50 Gy/25 fx</td>
<td>CT-RT (CDDP+5-FU) +/- Ctx</td>
<td>OS</td>
<td>OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median OS: 25.4 vs 22 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P = 0.035)</td>
</tr>
<tr>
<td>Suntharalingam et al. (2017)</td>
<td>Phase III</td>
<td>344</td>
<td>T3-4 and or N + EC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (CDDP + PAC) +/- Ctx</td>
<td>OS</td>
<td>2-yr OS: 44% vs 45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-yr OS: 28% vs 34% (P = .47)</td>
</tr>
<tr>
<td>Ruhstaller et al. (2011)</td>
<td>Phase III</td>
<td>300</td>
<td>cT3-4s (90% CEN+) EC</td>
<td>3DCRT 45 Gy/25 fx</td>
<td>Induction CT → CT-RT (CDDP + TXT) +/- Ctx → S</td>
<td>PFS</td>
<td>Median PFS: 2.9 vs 2 years (P = 0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median OS: 5.1 vs 3 years (P = 0.055)</td>
</tr>
<tr>
<td>Giralt et al. (2015)</td>
<td>Phase II R</td>
<td>151</td>
<td>LA-SCCHN</td>
<td>3DCRT/IMRT 70-72 Gy/30-32 fx</td>
<td>CT-RT (CDDP) vs CT-RT (PAN)</td>
<td>LRC</td>
<td>2-yr IRC: 61% vs 51% (P = 0.06)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-yr OS: 71% vs 63% (p = 0.10)</td>
</tr>
<tr>
<td>Siu et al. (2016)</td>
<td>Phase III</td>
<td>315</td>
<td>LA-SCCHN</td>
<td>3DCRT/IMRT 70 Gy/35 fx in 7 weeks vs 70 Gy/35 fx in 6 weeks</td>
<td>CT-RT (CDDP) vs CT-RT (PAN)</td>
<td>PFS</td>
<td>2-yr PFS: 73% vs 76%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P = .81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-yr OS: 85% vs 88% in arm B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P = .66)</td>
</tr>
<tr>
<td>Mesia et al. (2015)</td>
<td>Phase II R</td>
<td>150</td>
<td>LA-SCCHN</td>
<td>3DCRT/IMRT 70-72 Gy/30-32 fx</td>
<td>CT-RT (CDDP) +/- PAN</td>
<td>LRC</td>
<td>2-yr IRC: 68% vs 61% (HR = 0.66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helbling et al. (2013)</td>
<td>Phase II R</td>
<td>68</td>
<td>LARC</td>
<td>3DCRT/IMRT 45 Gy/25 fx</td>
<td>Neoadjuvant CT-RT (CAP) +/- PAN</td>
<td>pNC/CR</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ART = accelerated radiotherapy; CAP = Capecitabine; CAPOX = Capecitabine + Oxaliplatin; CDDP = Cisplatin; CR = complete response; CT = chemotherapy; CT-RT = chemoradiotherapy; Ctx = Cetuximab; IMRT = intensity modulated radiotherapy; DFS = disease-free survival; EC = esophageal carcinoma; fx = fractions; GEJC = gastro-esophageal junction carcinoma; IRI = irinotecan; LARC = locally advanced rectal cancer; LC = local control; LRC = loco-regional control; LP = larynx preservation; LPFS = local progression-free survival; LR = local relapse; NSCLC = non small cell lung cancer; ORR = objective response rate; OPSCC = oropharyngeal squamous cell carcinoma; OS = overall survival; PAC = Paclitaxel; PAN = Panitumumab; PEM = Pemetrexed; pCR = pathologic complete response; PFS = progression-free survival; pNC = pathologic near-complete response; R = randomized; RT = radiotherapy; 3DCRT = 3D conformal radiotherapy; RR = response rate; TPF = Docetaxel/Cisplatin/Fluorouracil; TXT = Taxotere.
the ACOSOG Z4051 trial (Lockhart et al., 2014) the rate of pathologic response (primary endpoint) and near pathologic response (secondary endpoint) was 53.7%, exceeding the prespecified thresholds, when Panitumumab was added to Docetaxel-Cisplatin based CT-RT; in the SAKK 41/07 trial the addition of Panitumumab to neoadojuvant CT-RT resulted in a high pNC/CR rate (primary endpoint), mostly grade 3 DC (Helbling et al., 2013).

Summary: currently Cetuximab is strongly recommended in LA SSSHN cancer patients unfit for standard CT, while the association of Cetuximab to CT-RT has been proven superior to CT-RT only in selected patients. In LAE, the addition of Cetuximab to CT-RT cannot be recommended, as a trend toward improved outcomes was seen only in patients with locally advanced, but still resectable disease. Panitumumab should be not routinely administered in association with RT since the only randomized trial that demonstrated a clinical benefit evaluated only few patients with LARC. Table 1 summarizes major clinical trials of Cetuximab and RT for different tumor sites.

2.2. HER2 inhibitors: trastuzumab and Pertuzumab

Human epidermal growth receptor factor 2 (HER2) targeting immunotherapeutic agents, comprising of HER2 specific humanized monoclonal antibodies Trastuzumab and Pertuzumab have acquired a central position as targeted anticancer modalities and are currently being extensively studied (Moasser and Krop, 2015). Trastuzumab consists of two antigen-specific sites that bind to the juxta-membrane portion of the extracellular domain of the HER2 receptor and that prevent the activation of its intracellular tyrosine kinase (Hudis and Clifford, 2007). Several possible mechanisms by which Trastuzumab might decrease signaling include prevention of HER2-receptor dimerization, increased endocytotic destruction of the receptor, inhibition of shedding of the extracellular domain, and immune activation (Valabrega et al., 2007). Preclinical models suggested that Trastuzumab recruits immune effector cells that are responsible for antibody-dependent cytotoxicity (Weiner and Adams, 2006). Studies in animal models of breast cancer in which HER2 is overexpressed indicate that angiogenesis may be inhibited by Trastuzumab, which induces normalization and regression of the vasculature by modulating proangiogenic and antiangiogenic factors (Petit et al., 1997; Vilorio-Pettit et al., 2001). Pertuzumab, a newer antibody that binding HER2 near the center of domain II appears to be more efficient due to increased inhibition of hetero-dimerization (Badache and Hynes, 2004). Despite the widespread concomitant use of both Trastuzumab and RT in HER2-positive breast cancer, this combination underwent only limited investigation in the context of clinical trials (Belkacém et al., 2008; Halyard et al., 2009; Perez et al., 2008; Meattini et al., 2014). In vitro studies showed that Trastuzumab enhances radiosensitivity (Azri et al., 2003; Pietras et al., 1999). Clinical data provided evidence for a radio-sensitizing effect in breast cancer and a good safety profile of combination with RT (Horton et al., 2010). Even if there is not a direct comparison between concomitant and sequential schedules, combined results of two trials (B-31 and N9831) that compared adjuvant CT with or without concurrent Trastuzumab in women with surgically removed HER2-positive breast cancer showed an absolute difference in disease-free survival (DFS) (primary endpoint) between the Trastuzumab group and the control group of 12 percent at three years, and a 33 percent reduction in the risk of death (P = 0.015) in the former group (Romond et al., 2005). Although relatively little follow-up information is available beyond three years, current data rule out a risk of distant recurrence among Trastuzumab-treated patients of greater than 27 per 1000 women per year, in contrast to a risk of 90 per 1000 women per year in the control group.

The Brown University Oncology Group (Safran et al., 2007) investigated the OS for patients with locally advanced, HER2 overexpressing, adenocarcinoma of the esophagus receiving Trastuzumab concurrently with Paclitaxel, Cisplatin, and RT on a Phase II-I pilot study: the median survival of all patients was 24 months and the 2-year survival was 50%, similar to prior studies without an increase in toxicity.

Recently, the Radiation Therapy Oncology Group (RTOG) 0524 study showed encouraging response rates (secondary endpoint) in patients with HER2-positive muscle-invasive bladder cancer unfit for surgery who were treated with RT and Paclitaxel + Trastuzumab as a bladder preservation therapy (Michaelson et al., 2017). No published data exists concerning concomitant Pertuzumab-Trastuzumab treatment.

Summary: Currently, Trastuzumab concurrent with RT could be safely administered in women with surgically removed HER2-positive breast cancer, provided that cardiac tissue sparing is warranted.

2.3. VEGF inhibitors: Bevacizumab

Several growth factors have been shown to contribute to angiogenesis, and among them, vascular endothelial growth factor (VEGF) is reputed as one of the most important ones involved (Folkman, 1971; Ferrara, 2002; Weis and Cheresh, 2011). Since the effects of RT on tumors are regarded as being dependent on the functional state of the vascular tumor bed and vascular-dependent supply of nutrients and oxygen (Ostergaard and Tietze, 2013), the development of antibodies and soluble receptors that inhibit the binding of VEGF to its receptors has the potential to act synergistically with irradiation.

Bevacizumab (BEV) is a humanized monoclonal antibody that inhibits VEGF. In combination with CT, BEV was associated with prolonged OS in phase III trials of metastatic colorectal cancer and NSCLC and with PFS in recurrent high grade glioma (HGG), metastatic breast and renal cancers (Polivka et al., 2017). BEV was extensively examined in clinical trials for treatment of recurrent as well as newly diagnosed HGG, as a single agent and in various combinations with CT and other targeted therapeutics (Fu et al., 2016). In addition, based on a well tolerated treatment with a high clinical response rates and prolonged PFS (Narayana et al., 2009), in 2009 BEV was approved by the US Food and Drug Administration (FDA) for the treatment of recurrent HGG. Combination of BEV with standard treatment for newly diagnosed HGG, including RT, was tested in one phase II and two large phase III clinical trials. An improved PFS (13.6 vs. 7.6 months) without improved OS (19.6 vs 21.1 months) – the primary endpoint of the study – was reported in 70 patients with HGG who were enrolled in the prospective, multicenter single-arm phase II study combining BEV with conventional temozolomide (TMZ)-based CT-RT (Lai et al., 2011). Likewise, in the phase III AVAglio trial (Chinot et al., 2014), that investigated the addition of BEV to RT + TMZ for the treatment of newly diagnosed glioblastoma, an improved PFS, but not OS – both coprimary endpoints – as well as maintenance of baseline quality of life and performance status were observed with BEV. A similar trend, with the addition of BEV to standard TMZ-based CT-RT was confirmed in the RTOG 0825 trial, designed to detect a 25% reduction in the risk of death and a 30% reduction in the risk of progression or death, the two coprimary endpoints: PFS was prolonged in the BEV group (10.7 months vs. 7.3 months; HR for progression or death, 0.79), but did not reach the prespecified improvement target, while no significant difference in the duration of OS was detected between the groups (Gilbert et al., 2014). The phase II, randomized, multicentric GENOM 009 study compared the efficacy and safety of treatment with TMZ or TMZ + BEV prior to and concomitant with RT in unresectable glioblastoma having as primary endpoint the response according to RANO criteria after the 2 pre-RT cycles: the primary endpoint was met, with a response rate significantly higher in the BEV arm. A tendency towards improved PFS, and OS was also observed in the BEV Arm, although the trial was not powered to detect statistical significance for these outcomes (Balana et al., 2014). Conversely, the efficacy outcomes and exploratory analyses of the randomized, multi-center phase II trial ARTE (Wirsching et al., 2018) evaluating the addition of BEV to hypofractionated RT
(40 Gy in 15 fractions) in elderly (≥ 65 years) patients with newly diagnosed glioblastoma, do not support the hypothesis that the addition of BEV to RT generally prolongs survival in this setting.

Disappointing results were reported in phase II trials investigating BEV in combination with CT-RT for unresectable stage III NSCLC, due to life-threatening sequelae (details provided in a parallel manuscript), and at present BEV cannot be recommended for routine clinical use (Sandomenico et al., 2012). BEV has been tested with pre-operative RT or CT-RT in LARC in several phase II trials. Most of them had as primary endpoint the pCR, that seems to have an impact on local control, disease-free survival (DFS) and OS, ranging between 15–25% with neoadjuvant CT-RT (Fornaro et al., 2014). A modest benefit by the BEV addition seems to be achieved in term of pCR (range = 14–32%) in a number of phase II trials, and conclusions about the impact on long-term outcome are difficult to draw due to the different trials design. An advantage in terms of pCR was also not observed (range = 8–21%) in additional phase II trials evaluating the addition of BEV to neoadjuvant regimens integrated with Oxaliplatin, with the exception of the non-randomized phase II study by Avallone et al. (Avallone et al., 2012). BEV has been tested with pre-operative RT to life-threatening sequelae (details provided in a parallel manuscript), BEV in combination with CT-RT for unresectable stage III NSCLC, due of BEV to RT generally prolongs survival in this setting. (Baumann et al., 2007). Moreover, anti-EGFR drugs influence cancer cell clonogenic survival, with a modest but consistent reduction in clonogenic survival when the drug is administered before RT (Baumann et al., 2007; Palumbo et al., 2014).

A direct comparison in terms of oncological outcomes between TKI alone and TKI associated with RT is not available. Four randomized phase II trials (Martins et al., 2013; Martinez et al., 2016; Lee et al., 2014; Pesce et al., 2012) and a single randomized phase III trial (Hammel et al., 2016) compared RT with or without TKI. Martins et al. (Martins et al., 2013) evaluated the impact of Cisplatin-irradiation with or without Erlotinib in 204 LA SCCHN patients. At a median follow up of 26 months, the addition of Erlotinib to Cisplatin-RT failed to increase both the complete response rate (primary endpoint) (P = .08) and the PFS rate (secondary endpoint) (P = .71). In the multicenter randomized controlled open-label trial by Martinez et al. (Martinez et al., 2016), the concurrent addition of Erlotinib to RT in 90 LA NSCLC patients versus RT alone was analyzed. Compared to RT-alone, the association of Erlotinib/RT showed a scarce clinical benefit, limited to complete responses and longer cancer specific survival (CSS) rate. In

3. Small molecules inhibitors

3.1. TKI (tinib): Erlotinib, Gefitinib, Afatinib

Anti-EGFR drugs reduce radiation-induced expression of DNA repair proteins (Chinnaiyan et al., 2005). When radiation reaches cell surface, it causes EGFR internalization. The receptor moves into the nucleus by binding proteins - Ku70/Ku80 and DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) - and activates damage repair. If antibodies or tyrosine kinase inhibitors (TKIs) block EGFR, the complex does not enter into the nucleus, resulting in the inhibition of DNA repair (Baumann et al., 2007). Moreover, anti-EGFR drugs influence cancer cell clonogenic survival, with a modest but consistent reduction in clonogenic survival when the drug is administered before RT (Baumann et al., 2007; Palumbo et al., 2014).

Table 2

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study type</th>
<th>N</th>
<th>Tumor site</th>
<th>RT technique/dose/fractionation</th>
<th>Combination (concomit, other)</th>
<th>Primary Endpoint</th>
<th>Treatment outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalone (2015)</td>
<td>Phase II</td>
<td>46</td>
<td>LARC</td>
<td>3DCRT 45 Gy/25 fx</td>
<td>CT-RT (OXATOM-FUFA) + BEV</td>
<td>TRG1</td>
<td>TRG1: 50%</td>
</tr>
<tr>
<td>Willett (2009)</td>
<td>Phase I-II</td>
<td>32</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (5-FU) + BEV</td>
<td>Safety/Efficacy</td>
<td>pCR: 16%</td>
</tr>
<tr>
<td>Salazar (2015)</td>
<td>Phase II</td>
<td>90</td>
<td>LARC</td>
<td>3DCRT 45 Gy/25 fx</td>
<td>CT-RT (CAP) +/- BEV</td>
<td>pCR</td>
<td>pCR: 11% vs 16% (£ = 0.54)</td>
</tr>
<tr>
<td>Kernecke (2012)</td>
<td>Phase II</td>
<td>42</td>
<td>high-risk rectal cancer</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (CAPOX) + BEV</td>
<td>Safety/Efficacy</td>
<td>pCR: 17.4%</td>
</tr>
<tr>
<td>Dallas (2013)</td>
<td>Phase II</td>
<td>70</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (CAPOX) + BEV</td>
<td>Safety/Efficacy</td>
<td>pCR: 17%</td>
</tr>
<tr>
<td>Landry (2013)</td>
<td>Phase II</td>
<td>57</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (CAPOX) + BEV</td>
<td>Safety/Efficacy</td>
<td>pCR: 17%</td>
</tr>
<tr>
<td>Verstraete (2015)</td>
<td>Phase II</td>
<td>82</td>
<td>LARC</td>
<td>3DCRT 45 Gy/25 fx</td>
<td>CT-RT (BEV + CAP) +/- OX</td>
<td>pCR</td>
<td>pCR: 8% vs 27% (£ = 0.05)</td>
</tr>
<tr>
<td>Velenik (2011)</td>
<td>Phase II</td>
<td>61</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (CAP) + BEV</td>
<td>pCR</td>
<td>pCR: 13%</td>
</tr>
<tr>
<td>Noguè (2011)</td>
<td>Phase II</td>
<td>47</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (CAP) + BEV</td>
<td>pCR</td>
<td>pCR: 36%</td>
</tr>
<tr>
<td>Dipetrillo et al. (2012)</td>
<td>Phase II</td>
<td>26</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>Induction FOLFOX + BEV + CT-RT (5-FU-OX)</td>
<td>pCR</td>
<td>pCR: 20%</td>
</tr>
<tr>
<td>Vivaldi et al. (2016)</td>
<td>Phase II</td>
<td>48</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>Induction FOLFOX + BEV + CT-RT (CAP or 5-FU)</td>
<td>ORR</td>
<td>ORR: 95%</td>
</tr>
</tbody>
</table>

Abbreviations: BEV = Bevacizumab; CAP = Capecitabine; CT = chemotherapy; CT-RT = chemo-radiotherapy; DFS = disease-free survival; FOLFOX = fluorouracil/Leucovorin/Oxaliplatin; 5-FU = 5 Fluorouracil; LARC = locally advanced rectal cancer; OX = Oxaliplatin; OXATOM-FUFA = Oxaliplatin/Raltitrexed/5-Fluorouracil modulated by folic acid; ORR = overall response rate; OS = overall survival; pCR = pathologic complete response; PFS = progression-free survival; R = randomized; RT = radiotherapy; 3DCRT = 3D conformal radiotherapy; TRG1 = pathologic complete tumor regression.
the context of locally advanced pancreatic cancer, the LAP07 trial (Hammel et al., 2016) was designed as a two-staged randomized phase III trial. In the first step, patients were randomized to receive induction CT with Gemcitabine or Gemcitabine plus Erlotinib for 4 cycles. In the second step, patients with controlled tumor (stable disease or objective response) were randomly assigned to CT-RV versus CT alone. In both arms, Erlotinib maintenance therapy was administered. With a median follow-up of 36.7 months, there was no significant difference in OS (primary endpoint) with CT-RV compared with CT alone (HR 1.03; 95% CI, 0.79–1.34; P = .83), nor with Gemcitabine compared with Gemcitabine plus Erlotinib used as maintenance therapy (HR, 1.19; 95% CI, 0.97–1.45; P = .09). Finally, in the SAKK 70/03 randomized phase II trial (Pesc et al., 2012), patients with brain metastases from NSCLC were randomly assigned to receive whole brain irradiation combined with Gefitinib versus TMZ. A total of 59 patients were enrolled. At a median follow up of 34 months, median OS (primary endpoint) in the Gefitinib arm was 6.3 months (95% CI 2.1–14.6) versus 4.9 months (95% CI 2.3–5.6) in TMZ treated patients.

Summary: currently, no evidence supports the routinely concomitant integration of TKI and RT. No data are available on Afnatinib and RT, thus, their combination in daily clinical practice is recommended only within clinical trials. Table 3 summarizes major clinical trials of TKI and RT for different tumor sites.

3.2. TKI (nib): Sunitinib and Sorafenib

Sunitinib is a TKI that targets multiple receptors such as VEGF receptor 1,2 and 3, Platelet-Derived Growth Factor (PDGF) receptor alpha and beta, tyrosine-protein kinase receptor (c-KIT), Fms-like tyrosine kinase 3 receptor (FLT-3), transmembrane tyrosine kinase receptor (RET), Colony-stimulating factor 1 receptor (CSF-1R), leading to de-activation of multiple signaling pathways involved in tumor growth and survival, angiogenesis and immune escape (Kleibeuker et al., 2015). At present time Sunitinib is approved, and currently adopted, for the treatment of metastatic renal cell carcinoma, pancreatic neuroendocrine tumors, while Imatinib for resistant gastro-intestinal stromal tumours (GIST). Acting on multiple targets, Sunitinib could enhance apoptosis and reduce clonogenic survival when given together with RT, both on tumor cells (Cuneo et al., 2008; Zwolk et al., 2008) and on endothelial cells (Schuemanen et al., 2003; Zhang et al., 2011). Sunitinib is generally delivered at 50 mg/daily in a 6-week schedule (4 weeks on and 2 weeks off). A phase I (Kao et al., 2009) and II trials (Tong et al., 2012) have been published, where Sunitinib in a 6-week schedule was delivered with image-guided radiotherapy (IGRT). Taken together, these phase II trials (Kao et al., 2014), explored in 46 patients the combination of hypofractionated IGRT (50 Gy in 10 fractions) with reduced dose of concurrent Sunitinib (37.5 mg) in a 6-week schedule in very different tumors (head and neck, HCC, NSCLC, renal, prostate, colorectal, pancreatic and melanoma) mainly in patients with two metastatic sites (68%) in one organ (76%) mostly bone (40%), lung (28%) lymph node (14%) and liver (13%). Moreover, 39% of patients received maintenance Sunitinib. The analysis was conducted to determine the long-term survival and cancer control outcomes for this novel regimen. Four-years local control (LC), distant control (DC), PFS and OS were 75%, 40%, 34% and 29%, respectively. Staehler et al. (Staehler et al., 2012; Staehler et al., 2011) investigated the feasibility of high dose hypo-fractionated RT concurrently with Sunitinib in progressive metastatic renal cell carcinoma. RT was delivered in median 12 fractions with 3.5 Gy daily fraction up to 40 Gy in 22 patients during standard 50 mg Sunitinib on a 6-week schedule. After this combination strategy, all but one patients experienced a response or stable disease for a median duration of disease stabilization of 14.7 months. Sorafenib is an inhibitor of multiple kinases that blocks tumor cell proliferation by targeting the serine/threonine-protein kinase (Raf)/ Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway (Wilhelm et al., 2006; Liu et al., 2006), clinically approved for HCC (Cheng et al., 2009). It has also shown clinical activity against advanced renal cell carcinoma and is considered an option in second-line therapy in this setting (Escudier et al., 2007). The mechanism of Sorafenib with its ability to act against VEGF and VEGF receptor (Gorski et al., 1999; Liu et al., 2005) provides a strong rationale for its combination with RT. Two studies examined the combination of Sorafenib and concurrent stereotactic radiosurgery (SRS). The aforementioned authors (Staehler et al., 2011) analysed the efficacy of simultaneous standard anti-angiogenic therapy and (SRS) in patients with spinal and cerebral metastases from renal cell carcinoma, having local control as the primary endpoint: forty-five patients were treated with Sunitinib and 61 patients with Sorafenib. Local tumour control 15 months after SRS was 98% (95% CI, 89–99%). The high local tumor control rate after SRS adds a valuable palliative tool to the therapeutic approach of metastatic renal cell carcinoma. In a phase II study, aimed at evaluating the response rate after combined treatment and the tolerability and toxicity as primary objectives, Chen et al. (Chen et al., 2014) reported results on 40 patients with unresectable locally advanced HCC treated with conventionally fractionated RT (2–2.5 Gy per daily fraction; dose range 40–60 Gy) with concurrent and sequential Sorafenib. Twenty-two (55.0%) patients achieved complete or partial remission at the initial assessment, with 2-year in-field PFS of 39%, which does not appear to be particularly superior to the results from some retrospective studies investigating response rates with RT alone (Park et al., 2002; Kim et al., 2005; Kim et al., 2006). In a report by Kasibhatla et al. (Kasibhatla et al., 2007) three consecutive patients with renal cell carcinoma experienced disease progression on Sorafenib therapy and received palliative RT for painful metastatic or locally recurrent disease, while undergoing Sorafenib therapy. All patients record a complete pain relief.

Summary: currently the association of Sunitinib and RT holds potential in increasing tumor response, provided that the dose is reduced to 37.5 mg daily in a classical 6-week schedule, or to 25 mg daily if a continuous schedule is applied. Sorafenib combined with cranial SRS records high local control rate, while in association with liver RT showed some activity.

3.3. poli-ADP-ribose polymerase (PARP) inhibitors (parib)

The effectiveness of PARP inhibitors has shown to be able to selectively target Breast Cancer Type susceptibility protein (BRCA) mutant tumor cells in pre-clinical models. A possible explanation of PARP inhibitors ineffectiveness is related to mechanisms of resistance due to additional mutations in the either the BRCA1 or BRCA2 genes in BRCA mutant patients (Satoh et al., 1993). Regarding a possible interaction with RT, it is known that ionizing radiation exposure results in the rapid activation and recruitment of PARP1 to damaged DNA, suggesting an actionable therapeutic window (Chalmers et al., 2004). To date, it remains to be determined whether a concurrent PARP inhibitors/RT combination versus a sequential approach will be more effective in a clinical setting. Additionally, efforts in identifying a biomarker for response to a combination PARP inhibitors/RT are needed to facilitate the application of this combination in clinical practice (Gani et al., 2015). Two phase I studies are available in literature exploring the combination of Velaparib and RT. In the trial by Reiss et al. (Reiss et al., 2015), low dose fractionated RT was associated to Velaparib in 22 patients affected by peritoneal carcinomatosis from advanced solid tumor malignancies. Patients were treated with Velaparib at the dose of 80–320 mg daily. Low dose RT consisted of 21.6 Gy in 36 fractions (0.6 Gy twice daily). No objective responses were observed. Disease stabilization longer than 24 weeks was observed in 33% of cases. Patients with ovarian and fallopian cancers had better quality of life (QoL) over time than those with other cancers. The phase I study by Mehta et al. (Mehta et al., 2015), evaluated the safety, and secondarily the
inhibitor, may enhance radiation response in cholangiocarcinoma, a
selves. Preclinical evidence showed that Olaparib, a highly potent PARP
antitumor activity of Veliparib, administered at the dose of 10–300 mg
orally, in combination with whole brain radiation therapy (WBRT)
(30–37.5 Gy in 10–15 fractions), due to its ability to cross the blood-
brain barrier. Eighty-one patients affected by brain metastases, mainly
affected by brain metastases, mainly
from NSCLC and breast cancer, were treated: the median survival time
(MST) for the NSCLC subgroup was 10.0 months (3.9–13.5) and for the
breast cancer subgroup was 7.7 months (2.8–15.0), far better than
predicted by a nomogram-model hypothesized by the authors them-
selves. Preclinical evidence showed that Olaparib, a highly potent PARP
inhibitor, may enhance radiation response in cholangiocarcinoma, a
highly malignant tumor typically resistant to RT alone (Mao et al.,
2018).

Summary: although the mechanisms of interaction between PARP
inhibitors and RT is intriguing, available data are far to be applicable in
clinical practice. Further studies are advocated.

3.4. PI3K/mTOR inhibitors: Everolimus

Everolimus is an oral inhibitor of mammalian target of rapamycin
(mTOR) pathway (Yang and Guan, 2007). There is also a connection
between the PI3K pathway and angiogenesis, and agents that can in-
hibit PI3K and/or mTOR signaling in tumor cells have effects on

Table 3
Major studies on RT and TKIs Oncologic outcomes.

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study type</th>
<th>N</th>
<th>Tumor site</th>
<th>RT technique/dose/fractionation</th>
<th>Combination (concomit, other.)</th>
<th>Primary Endpoint</th>
<th>Treatment outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martins et al. (2013)</td>
<td>Phase II R</td>
<td>95</td>
<td>LA-SCCHN</td>
<td>IMRT 70 Gy/35 fx</td>
<td>CT-RT (CDDP) + /- E</td>
<td>CRR</td>
<td>CR: 40% vs 52% (P = 0.08)</td>
</tr>
<tr>
<td>Martinez et al. (2016)</td>
<td>Phase II R</td>
<td>90</td>
<td>NSCLC</td>
<td>3DCRT 66 Gy/33 fx</td>
<td>RT alone vs RT + E</td>
<td>Feasibility/</td>
<td>Median OS: 11.4 vs 8.9 months (P = 0.835)</td>
</tr>
<tr>
<td>Herchenhorn et al. (2010)</td>
<td>Phase I/II</td>
<td>31</td>
<td>LA-SCCHN</td>
<td>TCT 70.2 Gy/39 fx</td>
<td>CT-RT (CDDP) + E</td>
<td>Safety/Efficacy</td>
<td>3-yy PFS: 61%</td>
</tr>
<tr>
<td>Yao et al. (2016)</td>
<td>Phase II</td>
<td>43</td>
<td>LA-SCCHN</td>
<td>IMRT 70 Gy/35 fx</td>
<td>CT-RT (weekly DOG) + E</td>
<td>DFS</td>
<td>3-yy DFS: 69.5%</td>
</tr>
<tr>
<td>Hainsworth et al. (2009)</td>
<td>Phase II</td>
<td>60</td>
<td>LA-SCCHN</td>
<td>3DCRT 68.4 Gy/38 fx</td>
<td>Induction BEV/5-FU/Capecitabine/PA → CT-RT (PAC + BEV) + E</td>
<td>PFS</td>
<td>3-yy PFS: 71%</td>
</tr>
<tr>
<td>Lilenbaum et al. (2015)</td>
<td>Phase II</td>
<td>75</td>
<td>Unresectable NSCLC</td>
<td>3DCRT 66 Gy/33 fx</td>
<td>RT + E</td>
<td>Feasibility/</td>
<td>3-yy OS: 81%</td>
</tr>
<tr>
<td>Ramella et al. (2013)</td>
<td>Phase I-II</td>
<td>60</td>
<td>Unresectable NSCLC</td>
<td>3DCRT 59.4 Gy/33 fx</td>
<td>CT-RT + Erlotinib</td>
<td>Safety/Efficacy</td>
<td>Median OS: 17 months</td>
</tr>
<tr>
<td>Herman et al. (2013)</td>
<td>Phase II</td>
<td>48</td>
<td>Resectable PA</td>
<td>IMRT 50.4 Gy/28 fx</td>
<td>CT-RT (CAP) + E → GEM + E</td>
<td>RFS</td>
<td>Median OS: 23.3 months</td>
</tr>
<tr>
<td>Hammel et al. (2016)</td>
<td>Phase III</td>
<td>133</td>
<td>Unresectable PA</td>
<td>54 Gy/30 fx</td>
<td>Induction GEM alone vs GEM + E → CT vs CT-RT</td>
<td>OS</td>
<td>Median OS: 24.4 months</td>
</tr>
<tr>
<td>Nogueira-Rodrigues et al. (2014)</td>
<td>Phase II</td>
<td>36</td>
<td>LACC</td>
<td>3DCRT 45 Gy/25 fx</td>
<td>CT-RT (CDDP) + E</td>
<td>Safety/Efficacy</td>
<td>2-yy OS: 91.7%</td>
</tr>
<tr>
<td>Blazkowsky et al. (2014)</td>
<td>Phase II</td>
<td>32</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (5-FU-BEV) + E</td>
<td>Safety/Efficacy</td>
<td>3-yy DFS: 75.5%</td>
</tr>
<tr>
<td>Zhao et al. (2016)</td>
<td>Phase II</td>
<td>21</td>
<td>Inoperable ESCC</td>
<td>IMRT 60 Gy/30 fx</td>
<td>CT-RT (weekly PAC) + E</td>
<td>Safety/Efficacy</td>
<td>Median OS: 22.9 months</td>
</tr>
<tr>
<td>Iyengar et al. (2014)</td>
<td>Phase II</td>
<td>24</td>
<td>Stage IV NSCLC</td>
<td>SBRT 27-33 Gy/3 fx</td>
<td>SBRT + E (1 week before and during)</td>
<td>PFS</td>
<td>Median PFS: 14.7 months</td>
</tr>
<tr>
<td>Welsh et al. (2013)</td>
<td>Phase II</td>
<td>40</td>
<td>BM</td>
<td>3DCRT 35 Gy/14 fx</td>
<td>WBRT + E (then maintained until neurological progression)</td>
<td>MST</td>
<td>Median OS: 20.4 months</td>
</tr>
<tr>
<td>Zhuang et al. (2013)</td>
<td>Phase II R</td>
<td>54</td>
<td>BM</td>
<td>3DCRT 30 Gy/10 fx</td>
<td>WBRT +/- E</td>
<td>LPFS</td>
<td>MST: 11.8 months</td>
</tr>
<tr>
<td>Lee et al. (2013)</td>
<td>Phase II R</td>
<td>80</td>
<td>BM</td>
<td>3DCRT 20 Gy/5 fx</td>
<td>WBRT +/- E</td>
<td>nPFS</td>
<td>Median LPFS: 6.8 vs 10.6 months (P = 0.003)</td>
</tr>
<tr>
<td>Pesce et al. (2012)</td>
<td>Phase II R</td>
<td>59</td>
<td>BM</td>
<td>3DCRT 30 Gy/10 fx</td>
<td>WBRT + TMZ vs WBRT + G</td>
<td>OS</td>
<td>Median OS: 8.9 vs 10.7 months (P = 0.02)</td>
</tr>
<tr>
<td>Wang et al., (2014)</td>
<td>Phase II</td>
<td>38</td>
<td>Stage IV NSCLC</td>
<td>SBRT 48-60 Gy/3 fx</td>
<td>SBRT + G (1 week before and until progression)</td>
<td>Tolerability/</td>
<td>Median OS: 4.9 vs 6.3 months</td>
</tr>
<tr>
<td>Valentini et al. (2008)</td>
<td>Phase I-II</td>
<td>41</td>
<td>LARC</td>
<td>3DCRT 50.4 Gy/28 fx</td>
<td>CT-RT (5-FU) + G</td>
<td>MTD/TRG</td>
<td>Median OS: 19 months</td>
</tr>
</tbody>
</table>

Abbreviations: BEV = Bevacizumab; BM = brain metastases; BRT = brachytherapy; CAP = Capecitabine; CDDP = Cisplatin; CRR = complete response rate; CT = chemotherapy; CT-RT = chemoradiotherapy; DFS = disease free survival; DOC = Docetaxel; E = Erlotinib; ESCC = esophageal squamous cell carcinoma; fx = fractions; 5-FU = 5-Fluourouracil; G = Gefitinib; GEM = Gemcitabine; IMRT = intensity modulated radiotherapy; LACC = locally advanced cervical cancer; LA-SCCHN = locally advanced squamous cell carcinoma of head and neck; LC = local control; LRFS = local relapse free survival; LPFS = local progression free survival; MTD = maximum tolerated dose; MST = median survival time; NSCLC = non-small cell lung cancer; nPFS = neurological progression free survival; OR: objective response; ORR = overall response rate; OS = overall survival; PA = pancreatic adenocarcinoma; PAC = Paclitaxel; pCR = pathologic complete response; PFS = progression-free survival; R = randomized; RFS = relapse free survival; RR = response rate; RT = radiotherapy; 3DCRT = 3D conformal radiotherapy; SBRT = stereotactic body radiotherapy; TCT = telecobaltotherapy; TMZ = temozolomide; TRG = tumor-regression grade; WBRT = whole brain radiotherapy.
angiogenesis as well as on tumor cell proliferation and survival (Karar and Maity, 2011). Everolimus is approved for the treatment of patients with advanced renal cell carcinoma, whose disease has progressed on or after treatment with VEGF-targeted therapy (Motzer et al., 2008), for treatment of postmenopausal women with advanced hormone receptor-positive, HER2-negative breast cancer in combination with Exemestane, after failure of treatment with Letrozole or Anastrozole (Beaver and Park, 2012). Synergistic effect of Everolimus and RT has been reported by several investigators and can be summarized in three points: perturbation of the proangiogenic factors’ release and also targeting tumor endothelial cells (Garcia-Barros et al., 2003; Paris et al., 2001; Carmeliet and Jain, 2000; Garcia-Barros et al., 2004), favors radiation induced autophagy of cancer cells (Lorin et al., 2008; Palumbo and Cominici, 2013), and finally blocks radiation-induced stress response of tumor cells and cycle progression and cell proliferation (Manegold et al., 2008). Phase I trials of concurrent RT and Everolimus have been published in lung (Deutsch et al., 2015), head and neck (Fury et al., 2013) cervical cancer (de Melo et al., 2016) and for salvage treatment of biochemical recurrence in prostate cancer (PC) patients following prostatectomy (Narayan et al., 2017) identifying maximum tolerated daily or weekly dose. The most significant experience investigating the association between Everolimus and RT consisted in a phase II trial (Chinnaiyan et al., 2018) evaluating the efficacy of Everolimus administered daily with conventional CT-RT in 171 patients with newly diagnosed glioblastoma: no significant difference in PFS (primary endpoint) was found between patients randomized to Everolimus compared with control (median PFS: 8.2 vs 10.2 months, respectively; P = 0.79), while OS for patients in the experimental arm was inferior to that for control patients (MST: 16.5 vs 21.2 months, respectively; P = 0.008).

Summary: The available clinical data of the association between Everolimus and RT are not sufficient to draw definitive conclusions on its applicability in the clinical practice.

3.5. BRAF inhibitor: Vemurafenib, Dabrafenib

BRAF is an integral part of the RAS-RAF-MEK-ERK (mitogen-activated protein kinase) signal transduction pathway, a protein kinase cascade which regulates cellular growth, proliferation, differentiation, and survival in response to extracellular signals, including growth factors, cytokines, and hormones Some mutations in the BRAF gene including V600E result in constitutively activated BRAF proteins, which can cause cell proliferation in the absence of growth factors that would normally be required for proliferation. BRAF gene mutations are found in about 60% of melanoma cells. The most common mutation in BRAF is caused by a single aminoacid substitution of valine for glutamine at codon 600, representing the majority of BRAF mutations found in human cancer (Wellbrock et al., 2004).

Vemurafenib was the first selective BRAF inhibitor approved in advanced melanoma with BRAF V600 mutation (Ceolin Folotto and Haas, 2014), followed by Dabrafenib, a potent and reversible ATP-competitive inhibitor that selectively inhibits the BRAF V600E kinase (Hauschild et al., 2012). Inhibition of BRAF has been associated with radiosensitization in vitro. Sambade et al. (Sambade et al., 2011) found that for V600E mutant melanoma cell lines, radiosensitization was due, in part, to alterations in the cell cycle distribution: Vemurafenib increased cell cycle arrest in G1 through inhibition of the MAPK/Erk signal transduction pathway. This suggests that PLX-4032 or other BRAF inhibitors in combination with RT could provide improved radiotherapeutic response in BRAF mutant melanomas. Interesting results have been reported in 6 patients with unresectable melanoma disease, treated with induction Vemurafenib and then receiving RT (median dose 57 Gy, conventional fractionation), with 3 patients receiving debulking interval surgery (Seeley et al., 2015). With 29 months’ follow-up, LC was 100%. The 3 patients who experienced relapse received salvage therapy to become free of disease at latest follow-up. Lee et al. (Lee et al., 2013) reported a case report in which a patient with positive cerebral spinal fluid cytology developed after 4 months of Vemurafenib, underwent WBRT (30 Gy in 10 fr) with Vemurafenib held 7 days before and after RT. With a follow-up of 18 months after RT, the cerebral spinal fluid was still negative without skin or non-dermatitis skin toxicity. The authors hypothesized that RT could have altered the permeability of the blood brain barrier allowing greater absorption of the drug in the spinal fluid. Baroudjian et al. (Baroudjian et al., 2014) reported a complete metabolic response in a patient who had progression in the axilla, after RT (30 Gy in 6 fractions) with concomitant Vemurafenib.

Summary: The data are insufficient to make recommendations about the concomitant use of BRAFi and RT.

3.6. Hedgehog signalling pathway inhibitors: vismodegib, ondidegib

The Hedgehog (HH) signaling pathway is involved in cell proliferation and differentiation during embryonic period and is largely suppressed in the adult. Recently, the HH pathway has been implicated in resistance to both CT and RT (Meng et al., 2015). In sporadic basal cell carcinoma (BCC), mutations induced by UV radiation can be found in the HH pathway (López Estebanaranz, 2012). The effect of Vismodegib administration in BCC patients is a significant decrease in HH signaling. On the other hand, Sonidegib blocks Hedgehog signalling (Pan et al., 2010). In the 3 largest trials evaluating the efficacy and safety of Vismodegib in patients with advanced BCC (Sekulic et al., 2015; Chang et al., 2014; Basset-Seguin et al., 2015), was tested and proven, thus adding a novel therapeutic modality in this setting. Block et al. (Block et al., 2015) reported a case of locally advanced BCC (LA BCC) treated with trimodality therapy (Vismodegib, RT, and local excision), resulting in excellent outcome and facial cosmesis, without requiring extensive resection or reconstructive surgery; Jacobsen et al. (Jacobsen and Strasswimmer, 2016) has reported resolution with Vismodegib of relapsing BCC after 14 months from previous RT; finally, the cases reported by Amici et al. (Amici and Beylot-Brarry, 2015) elicited the possible interest of RT in combination or after tumor debunking by Vismodegib. Pollom et al. (Pollom et al., 2015) reported 2 cases of recurrent BCC treated with concurrent RT and Vismodegib. Concurrent treatment was found to be efficacious and both patients had no evidence of progressive disease at last follow-up. Raleigh et al. (Raleigh et al., 2015) described the case of a patient affected by auricular LA BCC treated with induction Vismodegib and RT, reaching durable local control of disease. Schulze et al. (Schulze et al., 2016) studied four patients (3 with recurrent BCC and one with locoregional lymph node involvement) who received Vismodegib and RT (50.4–66 Gy) in combination. Three of the 4 patients experienced a complete response; one showed stable disease for 6 months and then experienced disease progression.

The approval of Sonidegib by the FDA was based on the demonstration of durable objective response rate from the phase II, multicenter, randomized and double-blinded Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT) clinical trial, which investigated the treatment with two different doses of Sonidegib in patients with metastatic or LA BCC (Midgen et al., 2015). The primary endpoint was the proportion of patients who achieved an objective response. Overall, 230 patients were evaluated, 79 in the 200 mg Sonidegib group and 151 in the 800 mg Sonidegib group. In the primary efficacy analysis population, an objective response was detected in 20 (36%, 95% CI 24–50) of 55 patients receiving 200 mg Sonidegib and 39 (34%, 25–43) of 116 receiving 800 mg Sonidegib. Interestingly, Sonidegib was administered after RT in 19 patients of the 200 mg group and 49 of the 800 mg group. Sonidegib is currently evaluated not only in BCC patients, but also in clinical trials for management of myelofibrosis, leukaemia and solid tumors sharing mutations like in BCC.

Summary: A paucity of data supports the use of Vismodegib and Sonidegib concurrently with RT. Further prospective data are
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study type</th>
<th>N</th>
<th>Tumour site</th>
<th>RT technique/dose/fractionation</th>
<th>Combination (concomit, other.)</th>
<th>Primary Endpoint</th>
<th>Treatment Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al. (2014)</td>
<td>Open label, multicentre trial</td>
<td>119(*)</td>
<td>laBCC (62) or mBCC (57)</td>
<td>N.R. Vismodegib after RT</td>
<td>Safety/Efficacy OR: 46.4% (laBCC) 30.8% (mBCC)</td>
<td>N.A.</td>
<td>PR</td>
</tr>
<tr>
<td>Basset-Seguin et al. (2015)</td>
<td>Open label, multicentre trial</td>
<td>499(**)</td>
<td>laBCC</td>
<td>N.R. Vismodegib after RT</td>
<td>Safety OR: 66.7% (laBCC) 37.9% (mBCC)</td>
<td>N.A.</td>
<td>PR</td>
</tr>
<tr>
<td>Block et al. (2015)</td>
<td>Case report</td>
<td>1</td>
<td>Right cheek BCC</td>
<td>3DCRT 50Gy /20 fx</td>
<td>Vismodegib (4 months) → RT → S</td>
<td>N.A.</td>
<td>PR</td>
</tr>
<tr>
<td>Jacobsen and Straswimmer (2016)</td>
<td>Case report</td>
<td>1</td>
<td>Left eye BCC</td>
<td>3DCRT 45Gy/15 fx Contact RT 40 Gy/10 fx (2 fx per week)</td>
<td>RT between Vismodegib cycles RT after Vismodegib</td>
<td>N.A.</td>
<td>CR</td>
</tr>
<tr>
<td>Amici and Beylo-Barr (2015)</td>
<td>Case report</td>
<td>2</td>
<td>laBCC</td>
<td>N.R. Vismodegib after RT</td>
<td>N.A. PR</td>
<td>N.A.</td>
<td>PR</td>
</tr>
<tr>
<td>Pollom et al. (2015)</td>
<td>Case report</td>
<td>2</td>
<td>Left nasal tip BCC</td>
<td>VMAT 66 Gy/33 fx 6-MeV and 9-MeV electrons 51 Gy/17 fx</td>
<td>Vismodegib and concurrent RT</td>
<td>N.A. 9 months SD, improvement in facial weakness, and pain free 12-months DFS</td>
<td>N.A.</td>
</tr>
<tr>
<td>Raleigh et al. (2015)</td>
<td>Case report</td>
<td>1</td>
<td>Right ear BCC</td>
<td>IMRT /70 Gy/35 fx</td>
<td>Vismodegib and concurrent RT</td>
<td>N.A.</td>
<td>PR</td>
</tr>
<tr>
<td>Schulze et al. (2016)</td>
<td>Case series</td>
<td>4</td>
<td>Recurrent Facial BCC</td>
<td>Case 1: 3DCRT 54.0 Gy/27 fx + interstitial HDR BRT boost of 12 Gy/2 fx Case 2: 3DCRT 66 Gy/33 fx Case 3: HRT 55 Gy/20 fx Case 4: HRT 55 Gy/20 fx</td>
<td>Vismodegib and concurrent RT</td>
<td>N.A. 6-months: CR (3) and SD (1)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Midgen et al. (2015)</td>
<td>Phase II R</td>
<td>230(***)</td>
<td>laBCC (194) or mBCC (36) and 151 in the 800 mg group</td>
<td>N.R. Sonidegib after RT</td>
<td>OR: 36.3% (200 mg group) 33.6% (800 mg group)</td>
<td>N.A.</td>
<td>PR</td>
</tr>
</tbody>
</table>

Abbreviations: BCC = basal cell carcinoma; BRT = brachytherapy; CR = complete response; DFS = disease free survival; fx = fractions; HDR = high dose rate; HRT = hypofractionated radiotherapy; laBCC = locally advanced basal cell carcinoma; mBCC = metastatic basal cell carcinoma; N.A = not applicable; N.R = not reported; OR = objective response; PD = progressive disease; PR = partial response; R = randomized; RT = radiotherapy; 3DCRT = 3D conformal radiotherapy; S = surgery; SD = stable disease; VMAT = volumetric modulated arc radiotherapy.

(*) previous RT in 38 patients.
(**) previous RT in 134 patients.
(***) previous RT in 19 (200 mg group) and 49 (800 mg group) patients.
warranted. Table 4 summarizes major clinical trials of Vismodegib/Sonidegib and RT for LA BCC.

4. Immune check point blockade

4.1. CTLA-4, PD-1 and PD-L1 antagonists

Cytotoxic T-lymphocyte-associated antigen (CTLA-4) is a master regulator of T-cell activation that plays a key role in maintaining tolerance to self-antigens, as demonstrated by the development of lymphoproliferative disease with massive T-cell infiltration of multiple organs in CTLA-4 knockout mice (Tivol and Borriello, 1995; Waterhouse and Penninger, 1995). However, in the immunosuppressive microenvironment of cancer, CTLA-4 becomes an obstacle to the activation and function of antitumor T cells. In a seminal study, antibody-mediated blockade of CTLA-4 was shown to induce effective antitumor immunity in mice (Leach and Krummel, 1996). The synergy of local RT with anti-CTLA-4 agents was seen in different tumor sites in the clinic. Two pivotal clinical reports showed how RT with Ipilimumab (Ipi), a monoclonal antibody targeting CTLA-4, might obtain better disease control by enhancing the abscopal effect on un-irradiated sites in advanced melanoma. (Postow et al., 2012; Hiniker et al., 2012). A retrospective series on 23 patients treated with palliative RT after Ipi reported abscopal responses in 11/23 (52%); median OS for patients obtaining an abscopal response was significantly higher than for non-responding patients (22.4 vs. 8.3 months) (Grimaldi et al., 2014). Similar results were reported by Chandra et al. (Chandra et al., 2015) in 47 consecutive metastatic melanoma patients treated with Ipi and RT: in 68% of cases, RT was associated with an improved rate of index lesion (outside radiation fields) response. Importantly, these studies demonstrated that oligofractionation of RT (3 fractions of 8 Gy each) was more effective at inducing an abscopal response than a single large fraction of 20 Gy or more fractionated treatment (5 fractions of 6 Gy each). Filippi et al. (Filippi et al., 2016) reviewed the possible combinations of immune checkpoints inhibitors and RT for advanced melanoma, highlighting the multiple options in terms of sequence and timing. The combination has been also explored for brain metastases. Trino et al. (Trino et al., 2017) revised the specific use of immune checkpoints inhibitors and SRS, summarizing the clinical results and toxicity of this approach in a non-systematic review. Researchers from the University of Michigan (US) analyzed the clinical and radiographic outcomes of 70 patients with melanoma brain metastases (MBM) who were treated with WBRT or SRS between 2005 and 2012 (Silk et al., 2013): those who received Ipi (33) had a censored median survival of 18.3 months (95% confidence interval 8.1–25.5), compared with 5.3 months (95% confidence interval 4.0–7.6) for patients who did not receive Ipi. Knisely et al. (Knisely and Yu, 2012) retrospectively reported on 77 patients with MBM treated with SRS: the median survival of patients managed with Ipi and definitive SRS was 21.3 months, as compared with 4.9 months in patients who did not receive Ipi. Conversely, in a similar study from New York University on 58 patients treated with SRS for MBM, the administration of Ipi did not result in improved intracerebral disease control, nor in increased OS (Mathew et al., 2013). Similar findings were replicated by Patel et al. (Patel et al., 2017), who compared the efficacy of Ipi and SRS to SRS alone for newly diagnosed MBM having OS as the primary endpoint: the Ipi cohort had no difference in 1-year OS (37.1% vs. 38.5%, p = 0.84), nor in 1-year local control (71.4% vs. 92.3%, p = 0.40) and intracranial control (12.7% vs. 29.1%, p = 0.59). Interestingly however, patients administered Ipi within 14 days of SRS had higher, although not statistically significant, 1-year and 2-year OS relative to Ipi delivered > 14 days and SRS alone. These latter findings were confirmed by Investigators at the Memorial Sloan Kettering Cancer Centre (MSKCC) who reported on 46 patients with MBM treated with Ipi and SRS: on multivariate analysis, prolonged survival was associated with the delivery of SRS during Ipi (Kiss et al., 2015). A single report (Golden et al., 2013) beared promising results, showing an abscopal response in a case of advanced heavily pretreated lung adenocarcinoma, receiving RT together with Ipi with palliative intent. Results are awaited from a prospective phase II study combining RT and Ipi in metastatic NSCLC (NCT02221739), and from a phase III randomized trial for patients with metastatic melanoma (NCT01689974).

An open-label phase I/II trial for men with metastatic castration resistant prostate cancer (mCRPC) tested escalated doses of Ipi from 3 mg/kg up to 10 mg/kg in 33 patients with or without a single 8 Gy dose directed at one to three osseous metastases. The highest dose of Ipi was well tolerated and an additional 34 patients were treated with concurrent RT with only 25% of patients demonstrating progressive disease (Slovien et al., 2013). To further test this treatment approach, a multicentre, randomized, double-blind, phase III trial was conducted in 799 men with at least one bone metastasis from mCRPC that had progressed after docetaxel, having OS as the primary endpoint: patients were randomly assigned to receive bone-directed RT (8 Gy in one fraction) followed by either Ipi 10 mg/kg or placebo every 3 weeks for up to four doses. No difference was detected in OS in the population as a whole (Kwon et al., 2014). However, in subset analysis there was an improvement in OS of patients with a limited burden of metastatic disease, demonstrated by alkaline phosphatase less than 1.5 the upper limit of normal, hemoglobin greater than 11 g/dL, and an absence of visceral metastases.

PD-1 is another inhibitory receptor expressed by T cells on activation that plays a critical role in maintaining the peripheral tolerance. In contrast to CTLA-4, however, PD-1 has a more restricted role and is thought to be mainly involved in limiting damage to normal tissue during inflammatory responses (Topalian and Drake, 2012). Its expression is restricted largely to myeloid cells, while PD-L1 is broadly expressed on hematopoietic and non-hematopoietic cells. Upregulation of PD-L1 is common in tumors and has been correlated with progression and poor prognosis (Dong et al., 2002; Zhang et al., 2014; Thompson et al., 2006). Antibodies targeting PD-L1 or PD-1 have been shown to promote CTL expansion and tumor regression in many mouse tumor models (Pilon-Thomas et al., 2010; Goding et al., 2013). These findings have been successfully translated to patients with metastatic melanoma treated either with Nivolumab and Pembrolizumab and SRS, WBRT or extracranial RT (Linker et al., 2016): response in irradiated extracranial/intracranial SRS lesions was 44% for sequential treatment and 64% for concurrent treatment (p = 0.448). Likewise, no significant difference between sequential or concurrent treatment in lesonal response of non-irradiated lesions was observed. Ahmed et al. (Ahmed et al., 2016) retrospectively analyzed a series of 160 patients with both resected and unresectable MBM, of whom 26 patients received SRS, from two prospective Nivolumab protocols: although the primary endpoint was neurotoxicity, local brain metastases control and survival (secondary endpoints) were prolonged compared with standard current treatment. Antonia et al. (Antonia et al., 2017) showed a longer PFS (primary endpoint) with Durvalumab, an anti PD-L1 antibody, as consolidation therapy than with placebo in stage III NSCLC patients who did not have disease progression after two or more cycles of platinum-based CT-RT. Interestingly, PFS was better when Durvalumab was initiated ≤ 2 weeks of RT (HR 0.39) rather than > 2 weeks after RT (HR 0.63). Inhibition of the PD-1 axis is therefore expected to be most efficient when it attenuates the radiation-induced immune response in close temporal relation to the radiation course. In the updated analysis (Antonia et al., 2018), the PFS benefit has translated to a significant prolongation in OS (second primary endpoint), leading to a 24-month OS rate of 66.3% (95% CI, 61.7 to 70.4) in the treatment group, compared with 55.6% (95% CI, 48.9 to 61.8) in the placebo group (stratified HR for death, 0.68; 99.73% CI, 0.47 to 0.997; P = 0.0025). Based on these results, Durvalumab was approved for the treatment of patients with unresectable stage III NSCLC whose disease had not progressed after platinum-based CT-RT. Otherwise, due to the disappointing results of a phase I trial (Lin et al., 2017), criteria were met...
for advancement to part II of the study where Atezolizumab (another anti PD-L1 antibody) would be added to CT-RT followed by consolidation Atezolizumab, Carboplatin, and Paclitaxel in LA NSCLC patients.

Summary: the combination of Ipi and RT is partially effective, especially for MBM. A trend towards a positive synergistic effect has been shown in a trial on mCRPC patients with bone metastases. Results from a phase III trial suggest that Durvulamab may be an effective adjuvant therapy in patients with stage III disease after standard treatment.

5. Androgen receptor pathway

The androgen pathway represents a crucial therapeutic target in PC treatment. Several mechanisms are advocated in case of metastatic castration resistant disease: 1) mutations of androgen receptor (AR); 2) the intracellular and paracrine effects of in situ androgen synthesis or circulating adrenal derived steroid precursors that significantly contribute to PC growth; 3) abnormalities within the AR pathway, involving coactivators and corepressors that predispose to AR pathway activation (Niraula et al., 2012). To date, there are broadly two new classes of hormonally active drugs in development: more effective AR antagonists, such as MDV3100 (Enzalutamide), ARN-509 (Apalutamide), TOK-001 (Galeterone), and inhibitors of the androgen biosynthetic pathway, such as Abiraterone.

5.1. Abiraterone

So far, the combination of Abiraterone (+ Prednisone) and RT has been investigated only in few studies: in a secondary analysis of the COU-AA-301 randomised trial (Logothetis et al., 2012), palliative RT to bone in patients experiencing localized progression at a single site, allowed to continue Abiraterone in men who were gaining benefit from this agent. These findings were confirmed in a recent retrospective study (Detti et al., 2017) that evaluated treatment outcomes of ongoing Abiraterone therapy with the addition of RT for oligoprogression or with a palliative intent, showing that RT may prolong Abiraterone treatment in metastatic castration resistant patients.

The potential interactions between Abiraterone and RT may also enhance the therapeutic ratio in case of high-risk localized disease, as well as postpone the subsequent systemic schedules in case of oligo-progressive castration resistant PC (oligo-CRPC) by virtue of SBRT. In the former setting, a phase II study (Cho et al., 2015) has been published regarding the concomitant use of RT and Abiraterone in men with localized disease (86% with high-risk PC) having the safety of this combination as primary endpoint. The study intervention consisted of 6 months of neoadjuvant and concurrent Abiraterone with LHRH analogues and RT (dose range 77.4–81 Gy). At median follow-up of 21 months (range: 3–37 months), only 1 patient (who had discontinued Abiraterone at 3 months) had biochemical relapse. In the latter one, Triggiani et al. (Triggiani et al., 2017) evaluated the impact of metastases-directed SBRT in two groups of oligometastatic PC patients: oligo-current PC and (oligo-CRPC). The primary endpoint in oligo-CRPC patients was distant progression-free survival (DPFS). At a median follow-up of 23.4 months, 1-and 2-year DPFS were 43.2% and 21.6% in the target population. A single case report (Martínez-Fernández et al., 2016) confirmed the ability of SBRT to delay the emergence of castration resistance and the need for systemic therapy when used after androgen deprivation therapy (ADT) failure.

Summary: currently, little evidence supports the use of Abiraterone in combination with RT, which warrants further validation.

5.2. Enzalutamide (MDV 3100)

Enzalutamide (MDV 3100) is a non-steroidal, second-generation Androgen Receptor (AR) antagonist that binds the AR with a higher affinity than Bicalutamide. It belongs to the class of next generation anti-androgens that have been recently approved for the treatment of mCRPC, both in the pre- and post-CT setting (Beer et al., 2014; Scher et al., 2012). Enzalutamide acts at different levels of the AR signaling pathway, not only antagonizing the AR, but also preventing the nuclear translocation and coactivating the recruitment of the ligand–receptor complex, as well as inducing tumor cell apoptosis (Locke et al., 2015). The rationale behind the combination between RT and Enzalutamide arises from data suggesting that, following RT, androgen receptor enhances DNA damage repair and contributes to resistance of PC cells to RT itself. Enzalutamide as a potent AR inhibitor could be considered a potential radiosensitizer and its mechanism of action in castration resistant PC cells could be partially due to the inhibition of DNA damage repair. The results of a preclinical study demonstrated a significant enhancement of RT efficacy and confirmed the rationale for exploring this combination in ongoing clinical trials (Ghashghaei et al., 2017). Enzalutamide recently demonstrated an important clinical response also in non-castrate resistant disease, thus representing a promising drug in combination with RT also in the earlier stage of PC: Tombal et al. (Tombal et al., 2014) in a phase II trial assessed the efficacy and safety of 25-weeks (~6-months) of Enzalutamide alone in patients with PC (all risk groups for whom hormone therapy was indicated) who had never received hormone therapy, presenting with non-castrate testosterone levels (230 ng/dl). The primary outcome was the proportion of patients with an 80% or greater decline in PSA at week 25. Enzalutamide alone for 6-months achieved a high PSA response rate with efficacy similar to castration, but unlike from castration, bone mineral density remained stable and metabolic balance was not substantially impacted. These findings suggest that Enzalutamide monotherapy in men with hormone-naive PC of varying severity provides a robust disease suppression. Preliminary studies have shown significant volume reductions of the primary prostate tumors according to 18Fluo-choline PET/CT evaluation. These findings could suggest the potential of Enzalutamide even in the setting of localized PC (Caffo et al., 2014).

Summary: no definitive data are currently available regarding the efficacy of the combination of RT and Enzalutamide. Table 5 summarizes on-going prospective trials evaluating the combination RT and Enzalutamide.

5.3. Newest compounds

5.3.1. Apalutamide (ARN-509)

Apalutamide acts on the same pathway of Enzalutamide, selectively and irreversibly binding itself to AR receptor. There are no published clinical data about the interaction between ARN-509 and RT. Preclinical data obtained in prostate cell cultures seem to point to a synergistic cell killing of Apalutamide and RT; this additivity seems mediated by the inhibition of DNA double strand breaks (DSB) repair mechanisms. LNCaP cells treated with Apalutamide showed decreased DSB repair pathway non-homologous end joining repair (NHEJ) (Bartek et al., 2013; Ferrarelli, 2013).

Two phase II trials confirmed the efficacy of Apalutamide in non-mCRPC and mCRPC (Rathkopf et al., 2017; Smith et al., 2016), and, based on the results of the phase III SPARTAN (Selectiv Prostate Androgen Receptor Targeting with ARN-509) trial, Apalutamide becomes the first drug that was approved by the FDA for the treatment of non-mCRPC on the basis of a primary end point of metastasis-free survival (MFS). In that study, Apalutamide plus ADT led to a 72% lower risk of metastasis or death and a 24-month delay in the development of metastases, as compared with placebo plus ADT (Smith and Saad, 2018).

Two currently ongoing phase III trials (NCT02531516 and NCT03488810) aim to determine if the combination of Apalutamide with ADT by LHRH agonists in patients with intermediate and high-risk PC receiving primary RT result in an improvement of MFS and DFS, respectively. Another single arm phase II trial (NCT02772588) is running to seek whether anti-testosterone medications (Leuprolide, 12

Downloaded for Anonymous User (n/a) at Ospedale Classificato Sacro Cuore - Don Calabria from ClinicalKey.com by Elsevier on January 23, 2019. For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.
Abiraterone and Apalutamide) combined with prostate SBRT are effective in preventing biochemical failure.

Summary: Apalutamide has been approved for non-metastatic PC patients with rising PSA during ADT. Ongoing clinical trials are evaluating whether this benefit can be replicated in patients with localized disease receiving primary RT.

5.3.2. Darolutamide (ODM-201)
Darolutamide is a mixture (1:1) of two pharmacologically active diastereomers. ODM-201 (both diastereomers) and its major metabolite, ORM-15341, have a higher AR-binding affinity than bicalutamide, enzalutamide and ARN-509. Additionally, ODM-201 inhibits nuclear translocation of AR in AR-overexpressing cells and inhibits tumor growth in the murine model. (Leibowitz-Amit and Joshua, 2012; Fizazi et al., 2013; Moilanen et al., 2013). No published data are present regarding the possible interaction with RT.

5.3.4. Orteronel (TAK-700)
Orteronel is an inhibitor of CYP17. When circulating testosterone is at castrate-levels, prostate cells can yet convert the adrenal androgens such as Dehydroepiandrosterone (DHEA) and Androstenedione (AED) to dihydrotestosterone (DHT). Orteronel preferentially inhibits 17,20-lyase activity and this may reduce the need for corticosteroid supplementation. No clinical data are published about the use of TAK-700 with RT. Only one study is registered targeting the use of the drug in men with recurrent PCa receiving primary RT +/- ENZ for high-risk PCa and ADT +/- ENZ in men with recurrent PCa. (NCT02203695).

5.3.5. Galeterone (TOK-001)
Galeterone in vitro increases AR protein degradation in PC derived cells expressing a T878A mutant AR. There are no data on the potential interactions of RT with Galeterone.

6. Perspectives and conclusions
Over the last decades, RT has been in the midst of new developments in technology. High-tech improvements have allowed for the maximal administration of dose to tumors while sparing normal tissues. In parallel, systemic therapies have been combined with radiation in an effort to improve tumor control. Conventional cytotoxic agents have improved survival in several tumor types but at the cost of increased toxicity due to effects on normal tissues. More recently, a better knowledge of the biological differences between tumor and normal cells as well as the differential responses of tumor and normal cells to radiation has prompted the investigation of molecularly targeted drugs and immunotherapeutic agents that may act synergistically with radiation. Despite intense work in this area, only two targeted drug classes are considered standard therapy with radiation: epidermal growth factor receptor (EGFR) inhibition with Cetuximab in head and neck cancer, and androgen receptor targeting with testosterone deprivation in intermediate and high-risk PC, thus reflecting a scenario where few drugs targeting new pathways are in clinical practice, although many are in clinical trials. This discrepancy can be in part explained by limited regulatory rules for drug-RT combination, as well as perceived challenges in designing trials with drugs developed specifically for use with RT, which should rely on relevant preclinical models. Definitely, the optimal dosing and timing have to be explored. Furthermore, predictive biomarkers are mandatory to drive treatment selection but only few have already been validated in patients receiving RT with molecular targeted therapy. In conclusion, the combination of modern RT and novel systemic compounds has the potential to translate in long-term clinical benefits for patients. A better understanding of new drugs and RT combination will require a truly multidisciplinary translational approach starting already in the preclinical phase and continuing through the clinical phase I, II, and III trials as well as during the post marketing studies.

Conflict of interest declaration
Dear Editor,
We did not receive any financial support of this work and accordingly any resulting issues regarding copyright transfer or open access requirements.
No other funded support has been obtained in the preparation of the manuscript (including editorial/writing assistance).
No financial relationships with commercial or corporate interest in connection with the submitted manuscript exists.
Stefano Arcangeli, MD (on behalf of all authors).

References

Table 5
On-going prospective trials evaluating the combination RT and Enzalutamide.

<table>
<thead>
<tr>
<th>Author</th>
<th>Study type</th>
<th>Clinical trial.gov number</th>
<th>Tumor site</th>
<th>RT technique/dose/fractionation</th>
<th>Combination (concomit, other)</th>
<th>Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Den, Thomas Jefferson University</td>
<td>Phase Ib</td>
<td>NCT02023463</td>
<td>Prostate</td>
<td>IMRT or VMAT daily five days a week for 8 weeks</td>
<td>RT + ENZ in Patients With Intermediate or High-Risk PCa</td>
<td>Safety</td>
</tr>
<tr>
<td>Courtney, UT Southwestern Medical Center</td>
<td>Phase II</td>
<td>NCT02064582</td>
<td>Prostate</td>
<td>EBRT standard protocol</td>
<td>ENZ + ADT Before, During, and After RT for High Risk Localized PCa</td>
<td>Safety and Tolerability</td>
</tr>
<tr>
<td>Bulley, Beth Israel Deaconess Medical Center</td>
<td>Phase II</td>
<td>NCT02028988</td>
<td>Prostate</td>
<td>EBRT 75.6-79.2 Gy/1.8 Gy fx</td>
<td>ENZ + EBRT in Intermediate Risk PCa</td>
<td>Biochemical Control</td>
</tr>
<tr>
<td>Larea, Hospital Universitario de Canarias</td>
<td>Phase II</td>
<td>NCT03196388</td>
<td>Prostate</td>
<td>HRT 70 Gy/28 fx</td>
<td>ENZ + HRT in Intermediate Risk PCa</td>
<td>Biochemical Control</td>
</tr>
<tr>
<td>Nguyen, University of California</td>
<td>Phase II</td>
<td>NCT02508636</td>
<td>Prostate + Pelvic nodes</td>
<td>N.R.</td>
<td>LEU-ENZ + RT in High Risk PCa</td>
<td>Toxicity and biochemical control OS</td>
</tr>
<tr>
<td>Nguyen, Dana Farber Cancer Institute and ANZUP</td>
<td>Phase III</td>
<td>NCT02446444</td>
<td>Prostate</td>
<td>EBRT 78 Gy/39 fx</td>
<td>ADT + RT + /- ENZ for High Risk, Clinically Localised, PCa</td>
<td>OS</td>
</tr>
<tr>
<td>Armstrong, Duke University</td>
<td>Phase II</td>
<td>NCT02057939</td>
<td>Prostate (BR)</td>
<td>Salvage EBRT 66.6 Gy/33 fx</td>
<td>Salvage RT + ENZ and ADT in Men With Recurrent PCa</td>
<td>FFP</td>
</tr>
<tr>
<td>Tran, Johns Hopkins</td>
<td>Phase II R</td>
<td>NCT02203695</td>
<td>Prostate (BR)</td>
<td>Salvage EBRT 66.6-70.2 Gy/37-39 fx</td>
<td>Biochemically Recurrent PCa</td>
<td>FFP</td>
</tr>
</tbody>
</table>

Abbreviations: ADT = androgen deprivation therapy; BR = biochemical recurrence; EBRT = external beam radiotherapy; ENZ = Enzalutamide; FFP = freedom-from-PSA-progression; fx = fractions; HRT = hypofractionated radiotherapy; IMRT = intensity modulated radiotherapy; LEU = Leuprolide; PCa = prostate cancer; RT = radiotherapy; 3D-CRT = 3D conformal radiotherapy; VMAT = volumetric modulated arc radiotherapy.

Author Study type Clinical trial.gov number Tumor site RT technique/dose/fractionation Combination (concomit, other) Primary Endpoint
S. Arcangeli et al.
Ang, H.K., Zhang, Q., Rosenthal, D.I., et al., 2014. Randomized phase III trial of concur-
rent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol. 32 (September (27)), 2940–2950.
Argiris, A., Heron, D.E., Smith, R.P., et al., 2010. Induction docetaxel, cisplatin, and ce-
tuximab followed by concurrent radiotherapy, cisplatin, and cetuximab and main-
Baroudjian, B., Boussemart, L., Routier, E., et al., 2014. Dramatic response to radio-
vanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an inter-
national, open-label trial. Lancet Oncol. 16, 729–736.
Beaver, J.A., Park, B.H., 2012. The BOLO-2 trial: the addition of everolimus to ex-
ematein in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol. 8 (June (6)), 651–657.
Belkacémì, Y., Gligorov, J., Ozsahin, M., et al., 2008. Concurrent trastuzumab with ad-
Ang, K.K., Zhang, Q., Rosenthal, D.I., et al., 2014. Randomized phase III trial of con-
current accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol. 29 (June (17)), 2313–2318.
Blazkowsky, L.S., Ryan, D.P., Szymonifka, J., et al., 2014. Phase I/II study of neoadju-

